A Novel Evidence Theory and Fuzzy Preference Approach-Based Multi-Sensor Data Fusion Technique for Fault Diagnosis

نویسنده

  • Fuyuan Xiao
چکیده

The multi-sensor data fusion technique plays a significant role in fault diagnosis and in a variety of such applications, and the Dempster-Shafer evidence theory is employed to improve the system performance; whereas, it may generate a counter-intuitive result when the pieces of evidence highly conflict with each other. To handle this problem, a novel multi-sensor data fusion approach on the basis of the distance of evidence, belief entropy and fuzzy preference relation analysis is proposed. A function of evidence distance is first leveraged to measure the conflict degree among the pieces of evidence; thus, the support degree can be obtained to represent the reliability of the evidence. Next, the uncertainty of each piece of evidence is measured by means of the belief entropy. Based on the quantitative uncertainty measured above, the fuzzy preference relations are applied to represent the relative credibility preference of the evidence. Afterwards, the support degree of each piece of evidence is adjusted by taking advantage of the relative credibility preference of the evidence that can be utilized to generate an appropriate weight with respect to each piece of evidence. Finally, the modified weights of the evidence are adopted to adjust the bodies of the evidence in the advance of utilizing Dempster's combination rule. A numerical example and a practical application in fault diagnosis are used as illustrations to demonstrate that the proposal is reasonable and efficient in the management of conflict and fault diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

A New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme

A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...

متن کامل

Rotating Machinery Fault Diagnosis Based on Fuzzy Data Fusion Techniques

Various diagnostics methods have been applied to machinery condition monitoring and fault diagnosis, with far from satisfactory levels of accuracy. With the development of modern multi-sensor based data acquisition technology often used in advanced signal processing, more and more information is becoming available for the purposes of fault diagnostics and prognostics of machinery integrity. It ...

متن کامل

A Novel Hybrid Fuzzy Multi-Criteria Decision-Making Model for Supplier Selection Problem (A Case Study in Advertising industry)

Choosing the proper supplier has a critical role in design of supply chain. This problem is complicated because each supplier may fulfills some of the manufacturer criteria and choosing the best supplier is a Multiple-Criteria Decision Making problem. This paper proposes a novel hybrid approach to rank suppliers in advertising industry and considers two new criteria to evaluate the suppliers in...

متن کامل

A novel ranking method for intuitionistic fuzzy set based on information fusion and application to threat assessment

A novel ranking method based on multi-time information fusion is proposed for intuitionistic fuzzy sets (IFSs) and applied to the threat assessment problem, a multi-attribute decision making (MADM) one. This method integrates a designed intuitionistic fuzzy entropy (IFE), the closeness degree of technique for order preference by similarity to ideal solution (TOPSIS), the decision maker¡¯s (DM¡¯...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017